Automated First-Order Theorem Proving in Software Engineering

Johann Schumann RIACS / NASA Ames schumann@ptolemy.arc.nasa.gov

ATP in Software Engineering

Johann Schumann

Introduction

- ullet formal methods in software engineering $\sqrt{}$
- formal methods require tools
 - automatic
 - powerful
 - trustworthy
 - usable

Application Areas for formal methods [tools]

- throughout the entire SW life-cycle
- where?
 - Verification
 - Synthesis of
 - * code
 - * designs
 - software reuse
 - debugging/testing
 - _ . . .

ATP in Software Engineering

-

Johann Schumann

Inference Systems

- inference system as a "kernel" of formal methods tools
- model checkers (SMV, SPIN)
 - successful for hardware
 - software ?
 - can you trust a MC? (no proof)
- interactive theorem provers (HOL, PVS, Isabelle, . . .)
 - too interactive
 - require specialists

Inference Systems II

- no prover
 - probably the best if you know what to do
- symbolic algebra systems (Mathematica,...) and similar systems
 - good in math, bad in reasoning
 - correct? $((x*y)/x \Rightarrow y)$
- automated theorem provers for first order logic
 - currently restricted "more by general usability than by raw deductive power" [Kaufmann,98]
 - can they be used? / what has to be done? (this tutorial!)

ATP in Software Engineering

Johann Schumann

Overview

- 1. Introduction
- 2. Logic Foundations
- 3. Proof Tasks and their Characteristics
- 4. Case Studies
 - (a) logic-based component retrieval
 - (b) synthesis of scientific software
 - (c) verification of cryptographic protocols
- 5. Requirements and Techniques
- 6 Conclusions

Logical Foundations

- Predicate Logic
- Model Theory
- Formal Systems
- Theorem Proving
 - resolution-style provers
 - tableau-style provers
- strengths and weaknesses of ATPs

ATP in Software Engineering

6

Johann Schumann

First Order Predicate Logic

- defined over alphabet of:
 - variables, constants: X, Y, a, 999, []
 - syntactic function symbols: $f(t_1,\ldots,t_m)$, $cons(t_1,t_2)$
 - predicate symbols: $p(t_1, \ldots, p_n)$, "="
 - connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$
 - quantifiers: \exists, \forall
- $\bullet \ \ \mathsf{Example:} \ \forall L \cdot (L = [\,] \lor (\exists H, T \cdot L = \mathsf{cons}(H,T))$
- syntax only

Model Theory

- ullet interpretation of formula over domain of discourse ${\cal D}$
- valuation function: assign values to terms, TRUE/FALSE to predicates
- Example: $\forall L \cdot (L = [] \lor (\exists H, T \cdot L = cons(H, T))$

I_1	$\mathcal{D} = lists$	[] is empty list	$\mathtt{cons}(H,T)$ is list constructor
I_2	$\mathcal{D}=traces$	[] is empty trace	$\mathtt{cons}(H,T)$ is prepend element to trace
I_3	$\mathcal{D} = N$	[] = 0	$\mathtt{cons}(H,T)$ is add number to sum $H+\Sigma T$

- \mathcal{F} is satisfiable if there is at least one valuation $v\colon v(\mathcal{F})=\mathrm{True}$ X+3>5 is satisfiable, but not valid; $X=0 \land X=1$ is unsatisfiable
- \mathcal{F} is valid if $v(\mathcal{F}) = \text{True}$ for all v and all interpretations ($\models \mathcal{F}$) $\forall A, B \cdot A \times B = B \times A \text{ not valid (matrices!)}$

ATP in Software Engineering

8

Johann Schumann

Formal Systems

- formal system = formal language + axioms + inference rules
- purely syntactic
- ullet inference rule: e.g. modus ponens $\dfrac{\mathcal{A}}{\mathcal{B}}$
- ullet $\mathcal F$ is a theorem ($\vdash \mathcal F$) if obtained from axioms by using inference rules
- ullet important: formal system S is sound if $\Gamma \models \mathcal{F}$ whenever $\Gamma \vdash \mathcal{F}$
- only then (syntactic) theorem proving makes sense

Theorem Proving

- purely syntactic operations
- compared to model checking: assignment of values
- often *refutation*: show $\neg \mathcal{F}$ is unsatisfiable (i.e., $\neg \mathcal{F} \vdash \text{False}$)
- FOL is semi-decidable, i.e.,
 - there is no algorithm which says True/False in all cases
 - there are algorithms which eventually say True for a valid formula
 - these algorithms usually do not terminate on non-theorems
- completeness: prover eventually finds the proof
- soundness: prover finds no false proofs

ATP in Software Engineering 10

Johann Schumann

First-order Automated Theorem Proving

- black box: $\mathcal{ATP}(\mathcal{F}, \mathsf{parameter}) \longrightarrow \mathrm{TRUE}/\mathrm{FALSE}/\mathsf{time}$ -out
- most theorem provers: input in Clausal Normal Form (CNF)
- high complexity $(\mathcal{O}(exp))$ or worse)
- two worlds (at least) of ATP:
 - synthetic calculi: generate new formulas from given ones
 - resolution-based theorem provers
 - analytic calculi: operate on given formulas, break them down
 tableaux-based theorem provers

Clausal Normal Form (CNF)

- specific normal form for logic formulas: contains only \land, \lor, \lnot
- CNF formula is a set of \(\) d clauses
- a clause is a set if √'d *literals* (atom or ¬atom)
- existential quantifiers removed by *Skolemization*: e.g., $\forall X \exists Y \forall Z \cdot p(X,Y,Z) \Longrightarrow p(X,f_Y(X),Z)$
- Example:

$$\begin{array}{c|cccc} \mathcal{F} & \neg \forall X \forall Y \cdot p(X,Y) \vee p(Y,X) \rightarrow \forall V \exists Z \cdot p(V,Z) \wedge p(Z,V) \\ \hline \text{CNF} & p(X,Y) & \vee & p(Y,X) & \wedge \\ \neg p(a,Z) & \vee & \neg p(Z,a) \\ \end{array}$$

ATP in Software Engineering

12

Johann Schumann

CNF II

- conversion algorithm pretty standard [Loveland78, Clocksin Mellish84]
- many optimizations possible
 - optimization of Skolemization: shorter Skolem functions
 - nested \leftrightarrow 's cause exponential size of CNF formula
 - "definitional normal form" [Eder85, Nonnengart98] avoids this
 - optimizations have significant influence on proof times
- "back"-transformation is possible with definitional normal form; never implemented

The Resolution Rule

- [Robinson,1965], 1978 already 25 variants
- inference rule: take two clauses and generate a new one out of them

$$\frac{L,K_1,\ldots,K_l}{\sigma K_1,\ldots,\sigma K_n,\sigma M_1,\ldots,\sigma M_n}$$
 where $\sigma L=\sigma L'.$

- use unification to obtain σ
- perform resolution step, until the empty clause [] has been obtained.
- then $\neg \mathcal{F}$ is unsatisfiable (\mathcal{F} is valid)

ATP in Software Engineering

14

Johann Schumann

Example

- $\begin{array}{cccc} (1) & p(X,Y) & \vee & p(Y,X) \\ (2) & \neg p(a,Z) & \end{array}$

Proof:

$$\begin{array}{c|c} p(X,Y) \vee p(Y,X) & \neg p(a,Z) \\ \hline & p(Z,a) & \sigma = [X \backslash a, Y \backslash Z] \\ \vdots & \neg p(a,Z) \\ \hline & [] & \sigma = [Z \backslash a] \end{array}$$

Search for the Proof

- potential for search:
 - which clauses participate in resolution
 - which literals are selected there
 - in which order to select clauses (agenda ordering)
 - which resolution rules to take
- breadth-first search
- backward and forward subsumption to reduce number of newly generated clauses

ATP in Software Engineering 16

Johann Schumann

OTTER: a resolution-type **ATP**

- the classical resolution-style prover
- developed at Argonne Natl. Labs (Bill McCune)
- implemented in C
- many inference rules and parameters with "auto-mode"
- reasonably good CNF transformation
- applications mainly in mathematics

Tableau-based ATP: Model Elimination

- ME [Loveland78]
- start rule
- extension rule
- reduction rule

- $\bullet \ \, \mathsf{Example:} \quad \begin{array}{ccc} p(X,Y) & \vee & p(Y,X) & \wedge \\ \neg p(a,Z) & \vee & \neg p(Z,a) \end{array}$
- ullet Substitutions: $X \backslash a, Y \backslash a, Z \backslash a, Z' \backslash a$

ATP in Software Engineering 18

Johann Schumann

Search for the Proof

- potential for search:
 - literal selection: which literal to take in the current clause
 - clause selection: extension into which clause
- PROLOG-style depth-first, left-to-right search
- iterative deepening for completeness

SETHEO: SEquential THEOrem prover

- developed at the Automated Reasoning Group in Munich, Germany
- implemented in C (UNIX, Linux) and PROLOG (preprocessing)
- many extensions for pruning the search space
- iterative deepening over various metrics
- parallel systems: PARTHEO, RCTHEO, SPTHEO, SICOTHEO, P-SETHEO
- winner on CADE prover competitions (CASC)
- http://wwwjessen.in.tum.de/~setheo

ATP in Software Engineering

20

Johann Schumann

Strengths and Weaknesses of ATPs

- ATPs are not flexible with respect to logic: "FOL/CNF only"
- ATPs are fully automatic: "interactive mode is a nightmare"
- ATPs are very weak in detecting non-theorems
- ATPs are highly efficient search algorithms with many knobs to turn
- ATPs find proofs fast (or never)
- ATPs produce proofs
- ATPs: many out there (Conf: CADE (CASC), Tableaux, FOL,...
 Journal AR, Automated Deduction-A Basis for Applications (3 Vols))

Overview

- 1. Introduction
- 2. Logic Foundations
- 3. Proof Tasks and their Characteristics
- 4. Case Studies
 - (a) logic-based component retrieval
 - (b) synthesis of scientific software
 - (c) verification of cryptographic protocols
- 5. Requirements and Techniques
- 6. Conclusions

ATP in Software Engineering

22

Johann Schumann

Proof Tasks in Applications

Principle Architecture

- from the outside
- logic-related characteristics
- system related characteristics
- classification scheme

From the Outside I

- number of proof tasks per "session"
 - 1-10 for verification
 - 100's to 10,000's for component retrieval (search in a library)
- frequency
 - $-\approx 50-100/min$ for automated online verification (e.g., verification of down-loadable code,proof-carrying code)
 - $-\approx 1/min$ for interactive systems
 - -0.1/min-0.01/min for non-interactive, batch-like verification
- "results-while-u-wait" ?

ATP in Software Engineering

24

Johann Schumann

From the Outside II: size and syntactic richness

- size of the formulas
 - even small formulas can be very hard to prove
 - large formulas might contain redundancies and unused parts (\rightarrow simplification)
- complexity of terms and syntactic richness
 - no function symbols (data logic): problem is decidable
 - finite domains: problem is decidable
 - rich formulas can have internal structure useful to guide the ATP
 - function symbols with large arity often produce hard-to-find proof

"Complexity"

"How difficult it is to find a proof?"

- *shallow*: proof is easy to find (simple structure), although it might be buried under tons of useless information
- deep: complex proof structure, hard to find

ATP in Software Engineering 26

Johann Schumann

"Complexity" vs. Size

"Complexity" vs. Frequency

ATP in Software Engineering

28

Johann Schumann

Logic-related characteristics

- which logic?
- ratio of theorems vs. non-theorems "ATPs usually only can detect theorems"
- semantic information?
- expected answer
 - True/False?
 - answer substitution, e.g. query $\exists X \cdot p(X)$ could returns $X = a \vee b$
 - which axioms and hypotheses have been used
 - proofs, human-readable(!) proofs

Classification Table

"start evaluating an application by filling out the classification table"

Short Table				
category	value			
deep/shallow	Shallow	Medium	Deep	
number	Small	Medium	Large	
size & richness	Small	Medium	Large	
answer-time	Short	Medium	Long	
distance	Short	Medium	Long	
extensions	Y/N	which?		
validity	XX % non-theorems			
answer	True/False	proof	other	
semantic info	Y	some	N	

ATP in Software Engineering

30

Johann Schumann

Overview

- 1. Introduction
- 2. Logic Foundations
- 3. Proof Tasks and their Characteristics
- 4. Case Studies
 - (a) logic-based component retrieval
 - (b) synthesis of scientific software
 - (c) verification of cryptographic protocols
- 5. Requirements and Techniques
- 6. Conclusions

Case Study: Component Retrieval

- Goal: find components in a reuse library
- produce a "usable" prototype:
 - "You must find the component before you can re-use it"
 - "You must find the component faster than you can re-build it"
- deduction-based component retrieval (NORA/HAMMR)
 - attach pre- and post- conditions to the library components
 - query in form of $(pre_q, post_q)$
 - construct proof task for each retrieval operation
 - use deductive methods
- Joint work with B. Fischer [FischerSchumann98, SchumannFischer98]

ATP in Software Engineering 32

Johann Schumann

Requirements

- repository = code + VDM/SL pre-post-conditions (usability)
- large repository results in many proof tasks (10,000's)
- "results-while-u-wait"
- ATP and logic machinery must be hidden from user

Example

Query:

 $\begin{array}{ll} \textit{QUERY}(x:\textit{List}) \ y:\textit{List} \\ \text{PRE} \quad x \neq [] \\ \text{POST} \quad \exists i:\textit{Item}, z:\textit{List} \cdot x = [i]^{\wedge}z \wedge y = z^{\wedge}[i] \end{array}$

 $tail(l:List)_m:List$

• Candidate:

- $\bullet \ \ \mathsf{proof \ task \ of \ the \ form:} \ \ (\mathit{pre}_q \Rightarrow \mathit{pre}_c) \land (\mathit{pre}_q \land \mathit{post}_c \Rightarrow \mathit{post}_q)$
- ullet proof found \equiv component can be retrieved

ATP in Software Engineering 34

Johann Schumann

Proof Tasks: Characteristics

category	value			
deep/shallow	Shallow	Medium	Deep	
size & richness	Small	Medium	Large	
number	Small	Medium	Large	
answer-time	Short	Medium	Long	
distance	Short	Medium	Long	
extensions	equality,sorts			
validity	10-15 % theorems			
answer	True/False			
semantic info	Υ	some	N	

System Architecture: GUI

- Easy usability: start, stop, zoom, browser
- hiding ATP evidence
- filter pipeline

ATP in Software Engineering

36

Johann Schumann

System Architecture: Filter Pipeline

Goal: drastically reduce number of proof tasks for the ATP

Experiments

- library of 119 specifications over lists
- full cross match for evaluation: 14161 proof tasks
- 13.1% are valid
- Results:
 - with SETHEO, we get a recall of 74.5%
 - just plug-and-play connection of ATP? NO
 - what had to be done?

ATP in Software Engineering

38

Johann Schumann

Case Study: Deductive Synthesis of Astrodynamics Programs

- NAIF Fortran library of astrodynamic routines
 - well standardized
 - hard to use because of the FORTRAN names: VXSEC(...)
 - problem solutions can be assembled from library calls
- Goal: Given a graphical specification, synthesize the corresponding FORTRAN program
- The system: AMPHION [Lowry etal]
 - fully deductive
 - based on the SNARK FOL theorem prover (resolution-style)

Example: Specification

ATP in Software Engineering

40

Johann Schumann

Example: Produced Code

```
SUBROUTINE SOLARO (TGAL, INSTID, SIANG)

C ...

C Input variables
CHARACTER*(*) TGAL
INTEGER INSTID

C Output variables
DOUBLE PRECISION SIANG

C ...

CALL SCS2E (GALILE, TGAL, ETGALI)
CALL BODVAR (JUPITE, 'RADII', DMY1, RADJUP)
CALL SPKSSB (GALILE, ETGALI, 'J2000', PVGALI)
CALL SE2T (INSTID, ETGALI, TKINST)
TJUPIT = SENT (JUPITE, GALILE, ETGALI)
CALL BODMAT (JUPITE, TJUPIT, MJUPIT)
CALL ST2POS (PVGALI, PPVGAL)
CALL SPKSSB (JUPITE, TJUPIT, 'J2000', PVJUPI)

C ...

CALL SURFNM (RADJUP(1), RADJUP(2), RADJUP(3), P, PP)
CALL MTXV (MJUPIT, P, XP)
CALL WTXV (MJUPIT, PP, XPP)
CALL VADD (PPVJUP, XP, VO)
CALL VSUB (PPVSUN, VO, DVOPPV)
SIANG = VSEP (XPP, DVOPPV)
RETURN
END
```

Characteristics

category	value			
deep/shallow	Shallow	Medium	Deep	
size & richness	Small	Medium	Large	
answer-time	Short	Medium	Long	
distance	Short	Medium	Long	
extensions	equations, λ -terms			
validity	100 % theorems			
answer	variable substitutions			
	explanations			
semantic info	Y	some	N	

ATP in Software Engineering 42

Johann Schumann

Amphion: System Architecture

Amphion: Why does it work?

- short distance between input specification and synthesized code
- linear code (i.e., no loops or recursion)
- rewriting and simplification
- decision procedures for specific operations
- answer substitution = functional program
- additional information used to generate explanations
- adapted to other domains: fluid dynamics, navigational software

ATP in Software Engineering

44

Johann Schumann

Case Study: Verification of Authentication Protocols

- Authentication protocols and cryptographic protocols widely in use
 - WWW
 - e-commerce
 - cellular phones, etc
- Authentication protocol (AP): partners must be correctly identified
- high vulnerability
 - bugs in most protocols
 - weak/bad encryption, etc.
- Verification important
- many approaches; here BAN-logic [Burrows, Abadi, Needham 89]

Example: The Kerberos Protocol

- protocol = sequence of messages
- formalized in BAN logic (multi-sorted modal logic)
- custom logic
- $\bullet \ pB \models pA \sim \{T_a, pA \stackrel{K_{ab}}{\leftrightarrow} pB\}_{K_{ab}}$
- defined by ca. 10 inference rules
- ullet typical proof task: $pA {\buildrel \in pA} \stackrel{K}{\leftrightarrow} pB$

ATP in Software Engineering

46

Johann Schumann

Requirements

- automatic operation
- input and proofs in BAN-logic

category	value			
deep/shallow	Shallow	Medium	Deep	
size & richness	Small	Medium	Large	
answer-time	Short	Medium	Long	
distance	Short	Medium	Long	
extensions	finite messages			
validity	80%- 90 % theorems			
answer	readable proof in BAN-logic			
semantic info	Y	some	N	

Example: manual Proof

As an example for a proof in the BAN logic, let us again consider the Kerberos protocol. We want to show that

$$pB \models pA \models pA \stackrel{K_{ab}}{\leftrightarrow} pB \tag{1}$$

holds, after messages 1-3 have arrived. Before message 3 has arrived, we already know from a previous proof task that

$$pB \models pA \stackrel{K_{ab}}{\leftrightarrow} pB. \tag{2}$$

By the inference rule "message-meaning" and with idealized message 3 (second part) of the protocol, we obtain

$$pB \models pA \sim \{T_a, pA \stackrel{K_{ab}}{\leftrightarrow} pB\}_{K_{ab}}. \tag{3}$$

Since, by assumption $pB \models \#T_a$, we have (if a part of a message is believed to be fresh, then the entire message is)

$$pB \models \#(\{T_a, pA \overset{K_{ab}}{\leftrightarrow} pB\}_{K_{ab}}). \tag{4}$$

Finally, by (3) and (4) and "nonce-verification", we can prove our theorem (1). q.e.d.

ATP in Software Engineering 48

Johann Schumann

Example: Output of PIL/SETHEO

Theorem 1. query $(\vdash pB \models pA \models pA \stackrel{K_{A,B}}{\leftrightarrow} pB).$

Proof (by SETHEO). We show directly that

$$query.$$
 (5)

Because of $message_3$

$$\vdash pB \triangleleft (\{\{\{T_S, pA \overset{K_{A,B}}{\leftrightarrow} pB\}\}_{K_{B,S}}, \{\{T_A, pA \overset{K_{A,B}}{\leftrightarrow} pB\}\}_{K_{A,B}}\}). \tag{6}$$

Because of $query_3$

$$query \leftarrow \vdash pB \models pA \models pA \stackrel{K_{A,B}}{\leftrightarrow} pB. \tag{7}$$

Because of $break_up_message$

$$\vdash P \models Q \models X \leftarrow X \sqsubseteq Y \land \vdash P \models Q \models Y. \tag{8}$$

Because of $nonce_verification$

$$\vdash P \models Q \models X \leftarrow \vdash P \models Q \triangleright X \land \vdash P \models \#X. \tag{9}$$

Because of $freshness \vdash P \sqsubseteq \#M_i \leftarrow \vdash P \sqsubseteq \#\{M1,\ldots,M_n\}$. Because of $assumption_11 \vdash pB \sqsubseteq \#T_A$. Therefore

$$\vdash pB \vDash \#(\{T_A, pA \overset{K_A, B}{\leftrightarrow} pB\}). \tag{10}$$

Because of $message_meaning$

$$\vdash P \vDash Q \succ X \leftarrow \vdash P \triangleleft \{X\}_K \land \vdash P \vDash Q \stackrel{K}{\leftrightarrow} P. \tag{11}$$

Because of $conjecture_2$

$$\vdash pB \vDash pA \stackrel{K_{A,B}}{\leftrightarrow} pB. \tag{12}$$

Because of $sees_components \vdash P \triangleleft M_i \leftarrow \vdash P \triangleleft \{M_1, \ldots, M_n\}$. Hence by (6)

$$\vdash \ pB \lhd \ \{ \{T_A, pA \overset{K_{A,B}}{\leftrightarrow} \ pB \} \}_{K_{A,B}}. \ \text{Hence by (11) and by (12)}$$

$$\vdash pB \models pA \vdash (\{T_A, pA \overset{K_{A,B}}{\leftrightarrow} pB\})$$
. Hence by (9) and by (10)

 $\vdash pB \vDash pA \succ (\{T_A, pA \overset{K_{A,B}}{\leftrightarrow} pB\}). \text{ Hence by (9) and by (10)}$ $\vdash pB \vDash pA \vDash (\{T_A, pA \overset{K_{A,B}}{\leftrightarrow} pB\}). \text{ Hence by (8)} \neg query. \text{ Hence by (7)} \ query. \text{ Thus we have completed the proof of (1)}.$

q.e.d.

ATP in Software Engineering

50

51

Johann Schumann

Overview

- 1 Introduction
- 2. Logic Foundations
- 3. Proof Tasks and their Characteristics
- 4. Case Studies
 - (a) logic-based component retrieval
 - (b) synthesis of scientific software
 - (c) verification of cryptographic protocols

5. Requirements and Techniques

6. Conclusions

Requirements and Techniques

- Is FOL automated theorem proving suitable at all?
- How to connect an ATP?
- How to handle logic extensions?
- How to get results?
- How to handle non-theorems?

ATP in Software Engineering

52

Johann Schumann

Expressiveness

Can your input logic be handled by the ATP?

Can I transform my favorite logic into FOL?

- often Higher-order logic is not that "high": $\forall P \in \{send, receive\} \cdot \forall Data \cdot \mathit{correct}(Data) \rightarrow P(Data)$
- finite domains, finite state spaces make things easier
- have a close look at higher order quantifier positions
- is translation possible?

Expressiveness II: Translation

- solid line: translation possible, dashed: partial translation
- back-translation?

ATP in Software Engineering

54

55

Johann Schumann

Hilbert-style T-Transformation

 \bullet "Meta" approach: for ${\mathcal F}$ in logic M we define first order predicate ${\bf T}(..)$

$$\mathbf{T}(\mathcal{F}') \equiv \text{True} \Leftrightarrow \mathcal{A} \vdash_M \mathcal{F}$$

- formulas become terms
- inference rules become FOL formulas:

$$\frac{\mathcal{F}_1 \quad \dots \quad \mathcal{F}_n}{\mathcal{G}}$$

is translated into $\mathbf{T}(\mathcal{F}_1') \wedge \ldots \wedge \mathbf{T}(\mathcal{F}_n') \to \mathbf{T}(\mathcal{G}')$.

Hilbert-style T-Transformation

- often convenient
- can induce huge search spaces
- can often be combined with ordinary proof procedures [Ohlbach98]
- can cause problems with quantifiers

ATP in Software Engineering

Johann Schumann

Connecting the ATP

robust and reliable system architecture for

- reading in / preparing proof task
- starting the prover(s)
- assembing/analyzing the result (SUCCESS)
- stopping the ATP
- cleaning up

ATP in Software Engineering 57

56

System architecture

System architecture for the reuse case study

ATP in Software Engineering 58

Johann Schumann

Extensions: Induction

Induction often required during program verification (recursive data structures, time-lines)

- induction is inherently higher order
 - variable(s) to perform induction ("induction over i")
 - induction scheme (" $n \rightarrow n + 1$ ")
 - induction hypotheses and additional lemmata
 - "base-case" and "step-case"
- can induction be performed by a first order ATP?
- many proof obligations are fairly "standard"

Ways to do Induction

- ullet additional lemmata: e.g., $orall l: \mathsf{list} \cdot \exists l, m, r: \mathsf{list} \cdot l = l \wedge m \wedge r$
- splitting up into several proof tasks:

$$\begin{split} \mathcal{F}([]) \\ \forall l: \mathsf{list} \cdot \forall i: \mathsf{item}, l_0: \mathsf{list} \cdot \mathcal{F}(l_0) \wedge l = [i] \, {}^{\wedge}l_0 \to \mathcal{F}(l) \end{split}$$

• "Poor Man's Induction":

$$\mathcal{F}([])$$
 $orall l_0: \mathsf{list} \cdot orall i: \mathsf{item} \cdot \mathcal{F}([i] \wedge l_0)$

ATP in Software Engineering 60

Johann Schumann

Induction: Experimental Results

SW-reuse	number of tasks				
Method	total	solved	failed	error	%-solved
axioms only	1838	1039	730	69	56.5%
w/lemmas	1838	1271	498	69	69.2%
case-splitting	1838	1235	487	114	67.2%
base	1838	1658	111	69	90.2%
step	1838	1235	487	114	67.2%
poor man's	1838	1302	467	69	70.8%
base	1838	1658	111	69	90.2%
step	1838	1302	467	69	70.8%

- Poor-man's often better, because formulas are smaller
- cannot be complete, but good results in practice

Sorts

- most proof tasks in verification are sorted: $\forall x : \mathsf{nat} \cdot \forall l : \mathsf{list} \dots$
- types in general are undecidable
- if sort hierarchy is upper semi-lattice, then sorted unification is unitary.
- this case is the interesting one
- mapping into ATP:
 - sorts as predicates: huge search space
 - sorted unification: need to modify prover
 - pre-compilation into terms

ATP in Software Engineering 62

Johann Schumann

Compilation of sorts into terms

- checking of sorts done by unification
- Example (many-sorted logic): $\forall X : \mathsf{nat} \cdot p(X)$ compiled into $p(X, \mathsf{nat})$
- extension to tree and DAG structure possible [Mellish,88]
- tools available but some intricacies

How to get results out of the prover?

- Preselection of axioms
- Simplification
- Control of the Prover

ATP in Software Engineering

64

Johann Schumann

Preselection of Axioms

- Domain theory is described by axioms
- all operators/functions are defined by axioms
- Example: lists with cons and append:
 - (1) $\forall X, Y : \mathsf{list} \ \forall I, J : \mathsf{item} : cons(I, X) = cons(J, Y) \to I = J \land X = Y$
 - (2) $\forall X : \text{list } \exists Y : \text{list } \exists Z : \text{item } : X = cons(Z, Y) \lor X = []$
 - (3) $\forall L : \mathsf{list} \ \forall X : \mathsf{item} : cons(X, L) \neq []$
 - (4) $\forall X : \text{list } \forall Y : \text{list } \forall I : \text{item} : app(cons(I, L), X) = cons(I, app(L, X))$
 - (5) $\forall L : \mathsf{list} : app([], L) = L$
 - (6) $\forall X : \text{list } \forall Y : \text{list } \forall Z : \text{list } : app(app(X, Y), Z) = app(X, app(Y, Z))$
 - (7) $\forall X : \mathsf{list} \ \forall Y : \mathsf{list} : app(X, Y) = [] \leftrightarrow X = [] \land Y = []$
 - (8) $\forall L : \mathsf{list} : app(L, []) = L$

Axioms and ATP

- axioms can span a *considerable* search space.
- especially transitivity is harmful: $\forall X, Y, Z \cdot p(X, Y) \land p(Y, Z) \rightarrow p(X, Z)$
- too few axioms \rightarrow no proof
- ullet too many axioms o no proof
- needed: what are the right axioms?

ATP in Software Engineering

66

Johann Schumann

Preselection of Axioms

- in general: undecidable
- good approximation [Dahn, Schellhorn/Reif, Fischer]:
 - use hierarchical theories (e.g., one for each group of operators)
 - hierarchy forms DAG or tree
 - select only those sub-theories which
 - * are used in the conjecture
 - * are dependent from already selected theories

• reuse case study (% solved problems): no axioms 46.3% all axioms 55.9% preselection 69.2%

Simplification

- most generated proof tasks contain redundant parts
- symbolic algebra systems and interactive TPs: many person-years spent on simplifiers
- ATP: usually no built-in simplifiers
- Reason: benchmarks (TPTP) library contains no redundancies

ATP in Software Engineering

Johann Schumann

Simplification II

- case studies show: simplification
 - is extremely important
 - can solve simple problems (26% in reuse case study)
 - can detect many non-theorems (later)
 - reduces size of formula
 - reduces processing time (compiling, loading, . . .)
 - increases number of solved tasks considerably
- here: some powerful, yet easy to perform simplifications (preprocessing)

Syntactic Simplification

- logic simplification (of course): $\mathcal{A} \wedge \text{True} \Rightarrow \mathcal{A}$
 - important when considering specific cases (e.g., induction)
 - $-X = [] \land (X \neq [] \land \mathcal{F}) \dots$
- removal of definitions $neq(X,Y) \leftrightarrow \neg equal(X,Y)$
 - usually shortens proofs: no intermediate steps to expand/contract definitions
 - can have dramatic effects (both ways)
 - in practice: only expand 1:1 definitions

ATP in Software Engineering

Johann Schumann

Syntactic Simplification II

ullet removal of simple equations of the form X=t

70

– example (SW reuse):

$$\forall I_1^q, \dots, I_n^q, O_1^q, \dots, O_m^q \cdot \forall I_1^c, \dots, I_n^c, O_1^c, \dots, O_m^c \cdot (I_1^q = I_1^c \wedge \dots \wedge I_n^q = I_n^c \wedge O_1^q = O_1^c \wedge \dots \wedge O_m^q = O_m^c \rightarrow \mathcal{F})$$

reduces to ${\mathcal F}$ with variable renamings

for many proof tasks: run-time reduction by factor of 10

Semantic Simplification

- using a set of rewriting rules extracted from domain theory
- not necessarily confluent
- examples:

$$\forall H, T \cdot \mathtt{cons}(H, T) \neq []$$

 $\forall H, T \cdot \mathtt{hd}(\mathtt{cons}(H, T)) = H$

- powerful: application of induction schemas plus simplification
- powerful: unrolling of recursive definitions plus simplification
- ullet result (SW reuse): more than 40% of non-valid proof tasks eliminated

ATP in Software Engineering 72

Johann Schumann

Control of the Prover

Requirements:

- usability: control hidden from the user
- smoothness: similar behavior on similar proof tasks
- speed: short answer times
- practical completeness: "we are slow, but we get more tasks solved"

Reality: ATPs have 100's of user-selectable parameters,

some of them known only to the developers of the system

Reality: . . . and even forgotten by the developers

Speed vs. Practical Completeness

number of tasks solved with $t_p < t \label{eq:tp} % \left(\frac{1}{T_p} \right) = t \left(\frac{1}{T_p} \right) \left(\frac$

- (a) the ideal case
- (b) aim at short answer times
- (c) aim at solving as many tasks as possible, but can have larger run-times

ATP in Software Engineering 74

Johann Schumann

Runtime Behavior of well-known provers

reuse case study (from [Fischer,2000])

Smoothness

- similar proof tasks should result in similar run-times
 - unfortunately not
 - Note:
 - "changing one ¬ can change validity"
- similar parameter settings should result in similar behavior
 - unfortunately not
- can often help: try out different settings in parallel
 - competitive parallelism
 - network of workstations or schedule
 - usually good results

ATP in Software Engineering

76

Johann Schumann

Handling of Non-theorems

- FOL is undecidable
- $\vdash \mathcal{F}$ prover eventually stops with "SUCCESS"
- $ot\!\!/ \mathcal{F}$ prover almost never stops
- Try ¬F ?
 - usually $\neg \mathcal{F}$ doesn't do the job either
 - we have: valid, satisfiable, unsatisfiable
- many applications produce large numbers of non-theorems. E.g., SW reuse: only 13.1% of proof tasks (1838 of 14161) are valid

Non-theorem Detection by Simplification

- use simplification on formula
- try to reduce to TRUE or FALSE
- combine with induction/definition unrolling: e.g., $\mathcal{F}[X\setminus[]] \land \forall H : \text{item } \forall T : \text{list} \cdot \mathcal{F}[X\setminus \text{cons}(H,T)]$
- \bullet SW reuse: 49.5% of non-theorems detected in <2s sun ultra-sparc

ATP in Software Engineering

Johann Schumann

Generation of Counterexamples

78

- only possible for finite domains
- systems: Finder [Slaney], ANLDP [McCune], . . .
- problem (big): how to make the domains finite:
 - Abstraction
 - Approximation
- very difficult in practice

Conclusions

- ATPs can be successfully applied
- it is no plug-and-play
- ATP developers start to work on applications
- applications needed to drive ATP applications and applicability
- that is You!

ATP in Software Engineering

80

Johann Schumann

Bibliography/WWW-pages

- J. Schumann, Automated Theorem Proving in Software Engineering. Habilitation Thesis, Technische Universität München, 2000. [ask me is you want a copy]
- W. Bibel and P. Schmitt (eds.) Automated Deduction: A Basis for Applications. Kluwer, 1999. (3 volumes)
- S. Hölldobler (ed.) Intellectica and Computational Logic: Papers in Honor of W. Bibel. Kluwer, 2000.
- $\bullet \quad \texttt{http://www-formal.stanford.edu/clt/ARS/systems.html}$
- http://www.comlab.ox.ac.uk/archive/formal-methods.html
- http://www.ase.arc.nasa.gov
- and many more